Volumetric Properties of Pentane + Carbon Dioxide at High Pressures

Erdogan Kiran,* Holger Pohler, and Yan Xiong

Department of Chemical Engineering, University of Maine, Orono, Maine 04469-5737

Abstract

The volumetric behavior of carbon dioxide + pentane has been investigated at 323, 348, 373, 398, and 423 K at pressures up to 70 MPa using a variable-volume view cell. Densities for pure components and fluid mixtures containing $10,20,35,50,62,72,80$, and 88% by weight carbon dioxide are presented as a function of pressure at each temperature. With increasing pressure (above 20 MPa) the density of carbon dioxide becomes greater than that of pentane, and mixture densities show a crossover with composition. At a given temperature and pressure, under a majority of the conditions evaluated, the excess volume for the mixtures shows a sigmoidal variation with composition, being negative at low carbon di oxide content and becoming positive with increasing carbon di oxide content. With increasing pressure, excess volumes become less negative.

Introduction

Binary fluid mixtures are important for a number of applications involving supercritical fluids. The interest in such fluids stems from the fact that using binary mixtures, one can (a) adjust the critical temperature and/or pressure of the mixture and thus the actual operational conditions, (b) reduce the amount of less desirable solvents for a given process application, (c) improve selectivity toward certain compounds, for example, in extractions, (d) introduce reactivity toward certain compounds as in reactive extractions, or simply (e) facilitate postprocessing and removal of residual active solvents.

At the University of Maine, we have been exploring binary fluid mixtures for regulation of solubility and processing of polymers, to conduct polymerization reactions, and to extract compounds from multicomponent complex matrices such as synthetic or natural polymer mixtures (Kiran, 1994). We have already reported the solubility of polyolefins in mixtures of carbon dioxide and pentane (Kiran et al., 1993; Xiong and Kiran, 1994a) or butane (Xiong and Kiran, 1994b). We have also reported polymerization of styrene in these fluids (Kiran and Gokmenoglu, 1994).

Even though phase equilibria and critical properties of carbon dioxide + pentane mixtures have been reported in the literature (Cheng et al., 1989; Leu and Robinson, 1987; Wu et al., 1988), there is essentially no information on the densities of these mixtures at high pressures. The density is an important scaling factor in many aspects of the supercritical fluid processing. We have undertaken the present study to document the volumetric behavior of these mixtures over the full composition range at pressures up to 70 MPa . The excess volumes for these mixtures and their variation with composition, temperature, and pressure have also been determined. Volumetric properties of other mixtures are also being investigated (Gokmenoglu et al., 1995; Pohler and Kiran, 1995).

Experimental Section

Variable-Volume View Cell. A specially designed variable-volume view cell initially developed for investigation of the solubility of polymers (Kiran et al., 1993) has

[^0]been used for measurements of the densities at high pressures. Figure 1 shows the overall system arrangement including the fluid delivery, pressure generation lines, and the view cell itself. The details of the view cell are shown in Figure 2. It is operable at pressures up to 70 MPa and temperatures up to 473 K . The maximum internal volume of the cell is (22.43 ± 0.05) cm^{3} as determined by charging water at ambient conditions. Two sapphire windows (W) permit visual or optical observation of the cell content. The window sealing is accomplished by gold foils on the wetted side. Mixing of the cell content is achieved with a magnetic stirrer (MS). The variable-volume part (VVP) is sealed with Teflon O-rings. An linear-variable differential transformer (LVDT) coil is used to monitor the position of the movable piston (P) in the variable-volume part. The methodology was initially developed and employed in our laboratory in a unique instrument for simultaneous measurement of density and viscosity at high pressures (Sen and Kiran, 1990; Sen and Kiran, 1991; Sen, 1991; Kiran and Sen, 1992, 1993). Its modifications and automated versions are in use in our laboratory for the study of pressure-volume-temperature (PVT) behavior and phase separation processes in high-pressure solutions (Kiran and Zhuang, 1994; Zhuang and Kiran, 1995). For position sensing, the movable piston (P) is attached to a steel rod with a ferromagnetic metal piece acting as the sensing element. This metal piece moves with the piston and induces a current in the LVDT coil. To determine the exact position of the piston, the LVDT coil is moved with the piston locator screw (PLS) until the digital readout unit (DRU) shows zero. At this point, the position readout unit (PRU) is set to zero also. When the piston is moved to a new position (using the pressure generator, PGN), the LVDT coil is moved to sense its new location. The reading from the PRU unit gives the actual distance traveled by the piston with an accuracy of 0.013 mm . Knowing the initial cell volume and the cross-sectional area of the piston ($1.99 \mathrm{~cm}^{2}$) permits determination of the volume change or the volume of the cell content at any other temperature or pressure.

Four cartridge heating elements (HE) are used to heat the cell. Temperature is controlled with an Omega controller using a platinum resistance temperature detector (RTD) probe and monitored with a resolution of $\pm 0.1 \mathrm{~K}$. The pressure is measured to an accuracy of $\pm 0.06 \mathrm{MPa}$ using

Figure 1. Overall diagram of the experimental system (TV = transfer vessel; $B=$ balance; $P G=$ pressure gauge; PGN = pressure generator; LVDT/PRU = piston position readout unit; VVP = variable-volume part; $\mathrm{HE}=$ heating elements; $\mathrm{RD}=$ rupture disk; $\mathrm{MS}=$ magnetic stirrer; TC = temperature controller).

Figure 2. Variable-volume view cell with piston position readout unit (LVDT $=$ linear-variable differential transformer; PLS = position locator screw; DRU = digital voltage readout unit; PRU $=$ position readout unit; $\mathrm{W}=$ sapphire window; $\mathrm{SB}=$ stirring bar; $\mathrm{P}=$ piston).
a Dynisco flush mount type transducer and read with a resolution of $\pm 0.007 \mathrm{MPa}$. The temperature is measured with an accuracy of $\pm 0.5 \mathrm{~K}$.

Operational Procedure. The system is designed for direct loading of the cell with different fluids using a transfer vessel and monitoring the change in mass of the transfer vessel during loading with a sensitive balance (Mettler Model 6100 with an accuracy of $\pm 0.01 \mathrm{~g}$). The cell is first flushed with carbon dioxide to remove any air, and then charged with the desired amount of pentane. The exact amount actually charged is further verified by disconnecting the cell from valves 3 and 5 (Figure 1), and weighing it on a Sartorius balance (16 kg capacity with
0.1 g accuracy). The cell is then connected to the system, and carbon dioxide is now charged from another transfer vessel (TV) which has been previously filled with liquid carbon dioxide. During carbon dioxide charge, the pump head (Milton Roy) is cooled to avoid cavitation. The amount of carbon dioxide charged to the cell is monitored by the change in thetotal mass of the transfer vessel. After charging, the cell which is now loaded with both fluids is again disconnected from the system line and the total cell content is weighed.

During the charging process no pressure is applied from the pressure generator to ensure that the experiments are started with the piston being at the top, i.e., cell at its maximum volume. The zero position of the piston, corresponding to the initial maximum volume position, is determined by the LVDT as described above. Then, the pressurizing fluid is pumped to fill the pressure generator line on the other side of the piston. (Essentially any fluid can be used in the pressure generation line, but fluids that are not very compressible are easier to work with. In these experiments, we have used pentane). The whole cell is then heated to a desired temperature, and the cell content is stirred with the magnetic stirrer. When temperature equilibrium is reached, the pressure in the cell is changed by moving the piston to different positions, and the corresponding cell volumes or the densities are determined. The mapping is continued for all temperatures of interest for a given fluid mixture.

Materials. Carbon dioxide was bone-dry grade with a purity of 99.8\% (Airco, supplied with an eductor tube). Pentane (99.9\% purity) was obtained from Aldrich.

Reproducibility and Errors. The resolution of the LVDT position sensor is such that the volume changes are determined with an accuracy of $\pm 0.0025 \mathrm{~cm}^{3}$. Density measurements are accurate to $\pm 1.2 \%$ as verified by comparisons with data reported in the literature at similar conditions. The error stems primarily from charging of the fluid to the cell, rather than determination of the changes in volume after the cell is loaded.

Results and Discussion

a. Density. Densities of pure carbon dioxide and pentane and of binary mixtures containing 10, 20, 35, 50 , $62,72,80$, and 88 mass \% carbon dioxide have been determined at 323, 348, 373, 398, and 423 K over a pressure range from 10 to 70 MPa . Table 1 shows the tabulated data. At these conditions, the mixtures are either in the one-phase liquid or supercritical fluid state. Figure 3 shows the variation of both the critical temper-

Table 1. Densities of Carbon Dioxide and Pentane Mixtures (Mixture Compositions Are Based on Mass)

323 K		348 K		373 K		398 K		423 K	
pressure /MPa	density $/\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	pressure /MPa	density $/\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	$\begin{aligned} & \text { pressure/ } \\ & \mathrm{MPa} \end{aligned}$	density/ ($\mathrm{g} / \mathrm{cm}^{3}$)	pressure/ MPal	$\begin{gathered} \text { density/(g/ } \\ \left.\mathrm{cm}^{3}\right) \end{gathered}$	$\begin{gathered} \text { pressure/ } \\ \text { MPa } \end{gathered}$	density/ ($\mathrm{g} / \mathrm{cm}^{3}$)
Carbon Dioxide/Pentane $=100 / 0$									
11.83	0.6292	19.63	0.6475	26.05	0.6282	32.64	0.6298	38.73	0.6281
15.46	0.7348	22.74	0.6932	28.78	0.6644	36.40	0.6711	40.26	0.6410
19.40	0.7954	25.19	0.7271	32.63	0.7087	40.06	0.7053	44.03	0.6726
22.96	0.8343	28.61	0.7648	36.11	0.7408	43.74	0.7346	47.57	0.7014
26.79	0.8659	32.55	0.8010	39.82	0.7710	47.73	0.7644	51.40	0.7293
30.59	0.8925	36.08	0.8270	43.79	0.7986	51.41	0.7881	55.33	0.537
34.45	0.9145	40.17	0.8534	47.56	0.8232	55.19	0.8088	59.16	0.7757
38.21	0.9347	43.74	0.8743	51.54	0.8454	59.08	0.8289	62.76	0.7962
41.93	0.9595	47.59	0.8927	55.13	0.8634	62.78	0.8472		
45.94	0.9655	51.39	0.9123	59.11	0.8808				
50.09	0.9837	55.22	0.9284	62.75	0.8974				
53.45	0.9942	59.12	0.9502						
Carbon Dioxide/Pentane $=88 / 12$									
9.55	0.6133	16.51	0.6142	23.10	0.6111	30.61	0.6144	38.07	0.6131
11.66	0.6746	19.22	0.6584	26.83	0.6504	34.54	0.6462	41.68	0.6377
15.46	0.7334	23.01	0.7021	30.66	0.6836	38.16	0.6738	45.69	0.6644
19.22	0.7677	26.62	0.7328	34.44	0.7107	41.96	0.6984	49.47	0.6862
22.99	0.7962	30.63	0.7613	38.15	0.7346	45.73	0.7177	53.11	0.7049
26.76	0.8191	34.48	0.7827	41.99	0.7572	49.42	0.7360	57.04	0.7227
30.56	0.8370	38.10	0.8015	45.68	0.7750	53.31	0.7536	60.92	0.7390
34.31	0.8539	41.78	0.8181	49.48	0.7909	57.75	0.7702	64.53	0.7528
38.23	0.8688	46.02	0.8350	53.28	0.8064	60.89	0.7850		
41.99	0.8822	49.47	0.8479	57.14	0.8203	64.49	0.7909		
45.74	0.8941	53.24	0.8601	61.03	0.8328				
49.42	0.9035	57.27	0.8728	64.76	0.8439				
53.24	0.9145	60.68	0.8827						
57.14	0.9254	64.52	0.8933						
61.48	0.9361								
64.61	0.9420								
Carbon Dioxide/Pentane $=80 / 20$									
9.71	0.6532	19.33	0.6622	26.83	0.6491	34.35	0.6409	42.02	0.6421
11.67	0.6837	22.94	0.6968	30.63	0.6784	38.20	0.6654	45.77	0.6617
15.40	0.7254	26.74	0.7242	34.36	0.7012	41.88	0.6863	49.61	0.6009
19.20	0.7541	30.69	0.7460	38.15	0.7216	45.61	0.7055	53.40	0.6672
23.05	0.7769	34.39	0.7641	41.90	0.7404	49.45	0.7237	57.03	0.7121
26.87	0.7956	38.22	0.7803	45.69	0.7548	53.39	0.7392	60.82	0.7256
30.49	0.8110	42.46	0.7971	49.48	0.7706	57.09	0.7534	64.61	0.7402
34.31	0.8263	45.71	0.8080	53.28	0.7848	60.73	0.7651		
38.24	0.8394	49.45	0.8188	57.03	0.7972	64.62	0.7775		
42.02	0.8507	53.41	0.8306	61.06	0.8094				
45.97	0.8618	57.12	0.8408	64.83	0.8190				
49.56	0.8713	60.89	0.8511						
53.13	0.8794	64.66	0.8603						
57.13	0.8890								
60.87	0.8967								
Carbon Dioxide/Pentane $=72 / 28$									
14.66	0.7149	22.74	0.7023	29.59	0.6956	38.18	0.6955	46.21	0.6964
19.29	0.7372	26.80	0.7211	31.42	0.7045	42.25	0.7116	49.49	0.7076
22.78	0.7512	30.65	0.7378	34.66	0.7193	45.86	0.7258	53.54	0.7232
26.67	0.7664	34.29	0.7506	38.30	0.7336	49.57	0.7390	57.09	0.7350
30.25	0.7776	38.18	0.7635	42.17	0.7484	53.17	0.7511	61.02	0.7469
34.34	0.7901	41.90	0.7762	45.85	0.7600	56.94	0.7634	64.92	0.7594
38.11	0.8004	45.60	0.7860	49.46	0.7713	60.64	0.7738		
41.82	0.8087	49.31	0.7959	53.42	0.7819	64.31	0.7831		
45.55	0.8165	53.07	0.8050	57.22	0.7927				
49.37	0.8261	56.81	0.8133	61.15	0.8019				
53.26	0.8330	60.77	0.8217	64.55	0.8110				
56.96	0.8411	64.71	0.8304						
60.67	0.8468								
64.73	0.8552								
Carbon Dioxide/Pentane $=62 / 38$									
17.64	0.7032	26.95	0.7029	36.49	0.7033	46.26	0.7030		
19.83	0.7105	30.51	0.7156	39.57	0.7134	49.67	0.7129		
23.26	0.7230	34.04	0.7255	42.43	0.7218	53.43	0.7234		
26.68	0.7326	38.34	0.7406	46.15	0.7316	57.56	0.7342		
30.67	0.7444	41.96	0.7510	49.84	0.7420	61.35	0.7439		
34.26	0.7539	45.92	0.7611	53.44	0.7514	64.71	0.7517		
38.21	0.7618	49.54	0.7694	57.41	0.7608				
42.02	0.7711	53.36	0.7775	61.08	0.7689				
45.86	0.7784	57.15	0.7856	64.73	0.7758				
49.71	0.7861	60.91	0.7942						
53.51	0.7930	64.42	0.8003						
57.46	0.7989								
60.97	0.8054								
65.01	0.8119								
Carbon Dioxide/Pentane $=50 / 50$									
13.54	0.6831	25.25	0.6832	35.73	0.6827	44.62	0.6832	53.70	0.6830
16.40	0.6945	28.02	0.6919	38.56	0.6922	49.45	0.6958	57.28	0.6924
19.67	0.7045	31.06	0.7014	42.38	0.7020	53.63	0.7068	61.11	0.7008

Table 1 (Continued)

Figure 3. Critical temperature and pressure of binary mixtures of carbon dioxide (1) + pentane (2). Data are from Cheng et al. (1989).

Figure 4. Pressure dependence of the density of carbon dioxide at different temperatures. Literature values are from Vargaftik (1975).

Figure 5. Pressure dependence of the density of pentane at different temperatures. Literature values are from (a) Kiran and Sen (1992) and (b) Sage and Lacey (1950).
ature and pressure for these mixtures based on data reported in the literature (Cheng et al., 1989). The present measurements are all at pressures above the maximum critical pressure for the mixtures.

Figures 4 and 5 show the densities of the pure fluids. As would be expected, the densities decrease with temperature and increase with pressure. Results are compared with literature data at similar temperatures and pressures

Figure 6. Pressure dependence of the density for the binary mixtures of carbon dioxide (1) and pentane (2) at 323 K . Compositions are on a mass basis. Pure pentane data at this temperature are from Kiran and Sen (1992).

Figure 7. Pressure dependence of the density for the binary mixtures of carbon dioxide (1) and pentane (2) at 348 K . Compositions are on a mass basis.
for carbon dioxide (Vargaftik, 1975) and pentane (Kiran and Sen, 1992; Sage and Lacey, 1950). When not at the same temperature, literature data were interpolated to match the temperatures. The density data for pentane are within $\pm 0.5-0.9 \%$ of the literature values. Carbon dioxide densities are within $\pm 1.3 \%$ of the literature values at low temperatures, and within $\pm 2.5 \%$ at higher temperatures. Comparisons with recent literature data of high accuracy on carbon dioxide (Duschek et al., 1990) could not be made since that set of data is limited to pressures less then 9 MPa, and temperatures less then 340 K . (The present measurements cover a range from about 10 to 65 MPa). On the average, the density determinations are estimated to be accurate within $\pm 1.2 \%$ of the literature values.

An interesting feature displayed in these figures is that pentane has a lower density than carbon dioxide at pressures above about 20 MPa . In the $20-70 \mathrm{MPa}$ interval, carbon dioxide densities vary in the range from 0.3 to $1.0 \mathrm{~g} / \mathrm{cm}^{3}$, while for pentane, the range is from about 0.55 to $0.67 \mathrm{~g} / \mathrm{cm}^{3}$. (That carbon dioxide may have higher densities than pentane is clearly understandable, but is against common a priori intuition). The figures also demonstrate the less compressible nature of pentane for which the pressure versus density curves are much steeper.

Figures 6-10 show the comparative densities of the binary mixtures at different temperatures. At 323 K , above 20 MPa there is a smooth transition to higher densities

Figure 8. Pressure dependence of the density for the binary mixtures of carbon dioxide (1) and pentane (2) at 373 K . Compositions are on a mass basis.

Figure 9. Pressure dependence of the density for the binary mixtures of carbon dioxide (1) and pentane (2) at 398 K. Compositions are on a mass basis.

Figure 10. Pressure dependence of the density for the binary mixtures of carbon dioxide (1) and pentane (2) at 423 K . Compositions are on a mass basis.
with increasing carbon dioxide content of the mixture. The density range covers values from 0.6 to $1.0 \mathrm{~g} / \mathrm{cm}^{3}$. At lower pressures, there appears to be a crossover region where the density for mixtures with high carbon dioxide content becomes lower than the density for mixtures with lower carbon dioxide content. The same trend is observed also

Figure 11. Excess volume for binary mixtures of carbon dioxide (1) with pentane (2) at 323 K .

Figure 12. Excess volume for binary mixtures of carbon dioxide (1) with pentane (2) at 348 K .
at 348 K , but smooth trends are observed above about 30 MPa. The crossover pressure becomes higher at higher temperatures. At 373 K and above, the full density range also narrows. At 423 K densities are limited to a range of values from about 0.58 to $0.8 \mathrm{~g} / \mathrm{cm}^{3}$.
b. Excess Volume. Specific volume $V^{\text {sp }}=1 / \rho$ versus pressure data werefitted with third-order polynomials, and the excess volume $\left(\mathrm{V}^{\mathrm{E}}\right)$ of the mixtures were determined at any given temperature for different pressures and compositions according to

$$
V^{E}=V^{\text {mix }}-\left[x_{1} V_{1}+x_{2} V_{2}\right]
$$

where x_{1} and x_{2} are the mole fractions of carbon dioxide and pentane. The results are shown in Figures 11-13 for excess volumes of the mixtures at 323,348 , and 373 K. The error in the excess volume data shown in the figures is estimated to be about 11\%. At each temperature, the excess volume per mole of mixture is plotted as a function of pressure and the mass fraction of carbon dioxide in the mixture. (Even though excess volumes are normally plotted as a function of mole fraction, in our laboratory, we are more interested in direct information on compositions based on mass).

In these figures, the compositions for which the mixtures are supercritical at the indicated pressures and temperatures are also noted. As already pointed out, pressures are all above the critical pressures of all the mixtures. Thus,

Figure 13. Excess volume for binary mixtures of carbon dioxide (1) with pentane (2) at 373 K .
the mixtures, even when they are at temperatures below the critical temperature of the mixture, are one-phase homogeneous liquids at these conditions.

As shown, excess volume data display sigmoidal variation with composition. At 323 K (Figure 11), at low carbon dioxide additions, mixtures display a negative excess volume which then becomes positive and goes through a maximum at around 0.5 mass fraction carbon dioxide at all pressures evaluated. For mixtures with high carbon di oxide content which are supercritical at this temperature, excess volumes remain positive. With increasing pressure excess volumes appear to become slightly more positive. At 348 K (Figure 12) similar behavior is observed, but the excess volumes tend to be more negative at this temperature. At even higher temperatures, at 373 K (Figure 13), sigmoidal behavior is still retained, but positive deviations now appear to be much smaller. At all temperatures, increasing the pressure makes the excess volume slightly more positive.

Excess volumes for pentane + carbon dioxide mixtures have not been previously reported in the literature. In fact, literature on excess volumes at high pressures is very limited. Depending upon the system investigated, both negative and positive excess volumes have been reported. For example, V^{E} in 3-methylpyridine + water at high pressures (up to 250 MPa) is negative and highly skewed toward high methyl pyridine concentrations, while for neon + nitrogen mixtures (up to 40 MPa) it is negative but more symmetrical (Battino, 1971). The excess volume in either system becomes less negative with increasing pressure. For water + ethanol at pressures up to 15 MPa (Ott et al., 1993) and for n-butylamine + alcohol up to 34 MPa (Papaioannou et al. 1993) excess volumes are negative and decrease (become less negative) with increasing pressure. In contrast, for mixtures of ethylbenzene with octanol, nonanol, and dodecanol, in the $50-100^{\circ} \mathrm{C}$ range at pressures up to 7.5 MPa, V^{E} is reported to be positive for all conditions (Garg and Ahluwalia, 1995). Excess volumes of mixtures of carbon dioxide and methane at $200^{\circ} \mathrm{C}$ and 1000 bar are reported to be positive and symmetric (Seitz et al. 1994). For mixtures of carbon dioxide, methane, and nitrogen at these conditions the excess volumes are also positive.

The present observations on the pressure effect for carbon dioxide + pentane, that is, excess volume becoming less negative with increasing pressure, is consistent with the literature. However, unlike carbon dioxide + methane, the present system shows sigmoidal variation with composition.

It should be noted that sigmoidal variation is more often reported with systems containing a polar component at low pressures. For example, at ambient conditions, excess volumes in toluene + propanol (Yadav et al., 1993) and tetralin + alcohol (Yu and Tsai, 1994) are reported to be sigmoidal. In these systems, the positive contribution to V^{E} is explained as arising from the breaking of hydrogen bonds in the self-associated alkanol and from disruptions in the favorable orientational order of the aromatic hydrocarbon. Negative contributions are attributed to changes of free volumes in the mixtures and to the presence of electron donor-acceptor interactions between alkanols and aromatic hydrocarbons (aromatic hydrocarbons are indicated to behave like electron donors). Competition of such opposing forces (i.e., positive contributions arising from disruption of order, and negative contributions arising from free-volume or packing effects) is given as the cause of the sigmoidal behavior in these systems.

The present system is a mixture of a nonpolar molecule (pentane) with a molecule having a quadrupole moment (carbon dioxide). Sigmoidal variation in V^{E} is suggestive of competing factors which may involve free-volume or packing effects, as well as disruption of order such as disruption of the quadrupole-quadrupole interactions in carbon dioxide in the mixtures. Quantitatively, it is possible to analyze the effectiveness of different equations of state in their ability to predict the experimental excess volumes, and hence provide insight into the relative importance of the attractive and repulsive contributions to the excess volume (Tomlins and Marsh, 1977). Such analyses have not been conducted at this time.

Conclusions

It is shown that the densities of mixtures of carbon dioxide and pentane display a crossover phenomenon which is a consequence of the density of carbon dioxide becoming greater than that of pentane at high pressures (at pressures above 20 MPa). Excess volumes for the mixtures show a sigmoidal variation with composition, being negative at low carbon dioxide levels, but becoming positive as the carbon dioxide content is increased.

Literature Cited

Angus, S., Armstrong, B., de Reuck, K. M., Eds. Carbon Dioxide. International Thermodynamic Tables of the Fluid State; Pergamon Press: New York, 1976.
Battino, R. Volume Changes on Mixing for Binary Mixtures of Liquids. Chem. Rev. 1971, 71, 5-42.
Cheng, H.; de Fernandez, M. E. P.; Zollweg, J . A.; Streett, W. B. VaporLiquid Equilibrium in the System Carbon Dioxide + n-Pentane from 252 to 458 K at Pressures to 10 MPa. J. Chem. Eng. Data 1989, 34, 319-323.
Duschek, W. , Kleinrahm, R.; Wagner, W. M easurement and correlation of (pressure, density, temperature) realtion of carbon dioxide. 1. The homogeneous gas and liquid regions in the temperature range from 217 to 340 K at pressures up to 9 MPa . J. Chem. Thermodyn. 1990, 22, 827-840.
Garg, S. K.; Ahluwalia, J. C. Excess Volumes of Binary Mixtures of Ethylbenzene with Octanol, Nonanol and Dodecanol from 50 to 100 C and 0.1 to 7.5 MPa . J. Solution Chem. 1995, 24 (2), 153-170.
Gokmenoglu, Z.; Xiong, Y,; Kiran, E. Volumetric Properties of Carbon Dioxide + Sulfur Hexafluoride at High Pressures. Submitted for publication to J. Chem. Eng. Data 1995.
Kiran, E. Polymer F ormation, M odifications and Processing in or with Supercritical Fluids. In Supercritical Fluids. Fundamentals for Applications; Kiran, E., Levelt Sengers, J. M. H., Eds.; Kluwer: Dordrecht, The Netherlands, 1994; pp 541-588.
Kiran, E.; Gokmenoglu, Z. Polymerization of Styrene in Supercritical Fluids. AIChE Annual Meeting, San Francisco, 1994; Abstract 121 f.
Kiran, E.; Sen, Y. L. High Pressure Viscosity and Density of n-Alkanes. Int. J . Thermophys. 1992, 13, 411-442.
Kiran, E.; Sen, Y. L. Viscosity of polymer solutions in near-critical and supercritical fluids. In Supercritical Fluid Engineering Science; Kiran, E., Brennecke, J. F., Eds.; ACS Symposium Series No. 514; American Chemical Society: Washington, DC, 1993; pp 104-120.
Kiran, E.; Zhuang, W. A New Experimental Method to Study Kinetics of Phase Separation in High-Pressure Polymer Solutions J. Supercrit. Fluids 1994, 1 (1), 1-8.

Kiran, E.; Zhuang, W.; Sen, Y. L. Solubility and Demixing of Polyethylene in Supercritical Binary Fluid Mixtures. J. Appl. Polym. Sci. 1993, 47, 895-909.
Leu, A. D.; Robinson, D. B. Equilibrium Phase Properties of the n-Pentane-Carbon Dioxide and I sopentane-Carbon Dioxide Binary Systems. J. Chem. Eng. Data 1987, 32, 447-450.
Ott, J. B.; Sipowska, J. T.; Gruszkiewicz, M. S.; Woolley, A. T. Excess Volumes for (Ethanol + Water) at the Temperatures (298.15 and 348.15 K) and Pressures ($0.4,5$, and 15) MPa and at the Temperature 323.15 K and Pressures (5 and 15) MPa. Chem. Thermodyn. 1993, 25, 307-318.
Papaioannou, D.; Bridakis, M.; Panayiotou, C. G. Excess Dynamic Viscosity and Excess Volume of n-Butylamine + 1-Alkanol Mixtures at M oderately High Pressures. J. Chem. Eng. Data 1993, 38, 370378.

Pohler, H.; Kiran, E. Volumetric Properties of Carbon Dioxide + Toluene at High Pressures. To be submitted for publication to J. Chem. Eng. Data 1995.
Sage, B. H.; Lacey, W. N. Thermodynamic Properties of the Lighter Paraffin Hydrocarbons and Nitrogen; American Petroleum Institute: New York, 1950.
Seitz, J. C.; Blencoe, J. G.; J oyce, D. B.; Bodnar, R. J. Volumetric Properties of $\mathrm{CO}_{2}-\mathrm{CH}_{4}-\mathrm{N}_{2}$ fluids at $200{ }^{\circ} \mathrm{C}$ and 1000 bars. A Comparison of Equations of State and Experimental Data. Geochim. Cosmochim. Acta 1994, 58 (3), 1065-1071.
Sen, Y. L.; Kiran, E. A New Experimental System to Study the Temperature and Pressure Dependence of Viscosity, Density and Phase Behavior of Pure Fluids and Solutions. J. Supercrit. Fluids 1990, 3, 91-99.
Sen, Y. L.; Kiran, E. Viscosity and Density of Polystyrene Solutions in Near- and Supercritical n-Butane and n-Pentane. Proc. 2nd Int. Symp. Supercrit. Fluids, Boston, 20-22 May, 1991, 29-32.
Sen, Y. L. The Density and Viscosity of Polymer Solutions at High Pressures and Temperatures. Ph.D. Thesis, University of Maine, Orono, ME, 1991.

Tomlins, R. P.; Marsh, K. N. Thermodynamics of mixtures of tetrakis-(2-ethylbutoxy)-silane with cyclohexane, benzene, and carbon tetrachloride. Comparison with theory. J . Chem. Thermodyn. 1977, 9, 651-659.
Vargaftik, N. B. Tables on the Thermophysical Properties of Liquids and Gases, 2nd ed.; J ohn Wiley \& Sons: New York, 1975.
Wu, G. W.; Zhang, N. W.; Zheng, X. Y.; Kubota, H.; Makita, T. HighPressure Vapor-Liquid Equilibria of Four Binary Systems Containing Carbon Dioxide. J. Chem. Eng. J pn. 1988, 21, 25-29.
Xiong, Y.; Kiran, E. Prediction of High-Pressure Phase Behavior in Polyethylene/n-Pentane/Carbon Dioxide Ternary System with the Sanchez-L acombe M odel. Polymer 1994a, 35 (20), 4408-4415.
Xiong, Y.; Kiran, E. High-Pressure Phase Behavior of Polyethylene/ n-Butane and Polyethylene/n-Butane/Carbon Dioxide Ternary Systems. J. Appl. Polym. Sci. 1994b, 53, 1179-1190.
Yadav, B. L.; Maken, S.; Kalra, K. C.; Singh, K. C. Excess Volumes of (an alkanol + an aromatic hydrocarbon) at the Temperature 308.15K. J. Chem. Thermodyn. 1993, 25, 1345-1350.

Yu, C.-H.; Tsai, F. N. Excess Volumes of (Tetralin + an n-alkan-1-ol). J. Chem. Thermodyn. 1994, 26, 191-195.

Zhuang, W. ; Kiran, E. An automated high-pressure PVT apparatus for continuous recording of density and isothermal compressibility of fluids. Rev. Sci. Instrum. 1995, in press.

Received for review June 28, 1995. Accepted October 6, 1995. ${ }^{\otimes}$ Financial support for this research has in part been received from the National Science Foundation (Grant CTS P310232) and the USDA (Grant 9237103 7989).
J E9501503
${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, November 15, 1995.

[^0]: * To whom correspondence should be addressed.

